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Machine (Deep) Learning Saga
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Deep Blue vs. Kasparov
~15000W

Watson Wins Jeopardy
~200000W

1997 2011 2016

AlphaGo vs. Sedol
~300000W

Algorithm performance moving closer

Hardware cost moving farther

2018

• Advent of Deep Learning, 2012
• Fueled by powerful hardware - GPUs

Autonomous Driving
~$$$$$

“Aspirations have grown faster than the technology 
available to satisfy them”



AI Compute Demands (Training)
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Edge Intelligence: Efficiency Gap

➢Case study: Object recognition in a smart glass with a state-
of-the-art accelerator

*300 GOPs/inference

4
Ref: Venkataramani, S., Roy, K. and Raghunathan, A. “Efficient embedded learning for IoT devices.” In 2016 
21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 308-311. IEEE. 

Where do the in-efficiencies come from?

Algorithms Hardware Architecture Circuits and Devices

Battery Life

Energy/op 0.5 pJ/op

Energy/frame 0.15 J/frame

Time-to-die 
(2.1WH)

64 mins

Performance

Frames/sec 13.3

Retinanet DNN* on a smart glass

+
Google Edge TPU



Beyond Compute Efficiency….

➢Learning with less data

➢Generalization & Robustness/ 
Security

➢Lifelong learning
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Center for Brain-Inspired Computing (C-BRIC): Approach

➢Design next-generation AI systems by drawing from 
neuroscience, mathematical foundations and using CMOS and 
beyond CMOS HW fabrics

• Network topology
• Information representations
• Learning models

• Theory of learning
• Network optimization
• Distributed learning
• Safety & robustness 

analysis
• In-memory compute fabrics
• Stochastic & approximate hw
• Algorithm/Hw codesign



AI Hardware Architecture: Circuits & Devices

➢Circuits and architectures that can efficiently implement the 
algorithms (possibly embody computing principles from the 
brain)
o Near-/In-Memory Computing
o Approximate and stochastic hardware
o Neuromorphic devices and interconnects

Accelerators

In-memory 
computingApproximate 

& Stochastic 
Hardware

Neuromorphic 
Devices

Multicores/GPUs

~104

Energy
Gap
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Background – In-Memory Computing

➢Definition: Design approach that performs computation close to memory to 
overcome memory bottlenecks – bandwidth, energy

➢Effective for simple arithmetic - bit-wise operations; fixed-point add, multiply, 
Truth-tables (ROMs/RAMs)

➢Typical systems have much higher compute throughput than memory 
bandwidth(s)

➢Lots of chip area are memory components (>=50% in TPU)
o Caches (L1, L2, …), Register File, Scratchpad, Buffers

8

TPU Floorplan, ISCA 2017Computer Architecture: A Quantitative Approach



In-Memory Computing for ML
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WL 1

BL 128BL1

2KB Memory

WL 128

Typical Memory Access

Bits Accessed = 128

Operation = Read/Write

In-Memory Computing

Analog

Bits Accessed = 4*128

Operation = Matrix Vector Multiply

Vout = M * Vin

M
: 

4
×

6
4

Vin
T: 1×4

Vout: 1×64

2KB Memory

Bits Accessed = 2*128

Operation = Bit-wise AND

Vout = V1 AND V2

In-Memory Computing

Digital

2KB Memory

V1

V2

Vout

Non Volatile 
Memory

SRAM

Jain et al. TVLSI’17, Abbrogio et al. Nature’18, 
Cai et al. Nature Elec.’19, Xue et al. ISSCC’20, Liu et al., ISSCC’20 

Biswas et al. ISSCC’18, Valavi et al. JSSC’19, Si et al. ISSCC’19, Jaiswal et al. TVLSI’20, 
Dong et al. ISSCC’20 (TSMC – 7nm)

Peripherals

ROM/RAM Lee et. al. EDL 2013, Lee et. al. TVLSI 2013,   



Machine Learning (Deep Learning)

➢Deep Learning needs – lots of matrix multiplications
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Bruce Fleischer et al, IBM Research, 2018

➢ Challenge: sustaining deep learning’s insatiable compute demands



Technology: Non-Volatile Memories
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CMOS SRAM and Non-volatile Memories 

Property PCM RRAM MTJ CMOS (SRAM)

Multi-level cell Yes Yes No No

Storage Density High High High Low

RON/ROFF High High Low High

Non-volatility Yes Yes Yes No

Leakage Low Low Low High

Cell Area 16F2 16F2 30-80F2 160F2 (6T), 
231F2 (8T)

Write Energy 6 nJ 2 nJ < 1 nJ < 0.1 nJ

Write Latency 150 ns 100 ns 10 ns < 1ns

Endurance 107 cycles 105 cycles 1015 cycles > 1016 cycles



Fundamental building blocks of in-memory computing
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CMOS

Chakraborty et. al. Resistive Crossbars as Approximate Hardware Building Blocks for 
Machine Learning: Opportunities and Challenges, Proc. of IEEE, 2020



Efficient Hardware Architecture: CiM
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Chakraborty et. al. Resistive Crossbars as Approximate Hardware Building Blocks for 
Machine Learning: Opportunities and Challenges, Proc. of IEEE, 2020



Bit-slicing (weights and inputs)

➢ Bit-slicing: weight slicing and input streaming enable using low precision crossbars and 
low precision DACs to compose high precision MVMU

15

Wi,j

[1:0]
Wi,j

[3:2]

Vi Vi

SnA (Weight slicing)
𝑉𝑖 ∗ 𝑊𝑖𝑗
= (𝑉𝑖 ∗ 𝑊𝑖𝑗[1: 0]) +
(𝑽𝒊 ∗ 𝑾𝒊𝒋 𝟑: 𝟐 ≪ 𝟐)

Wi,

j

Vi=5 or [101]

SnA (Bit streaming)
𝑉𝑖 ∗ 𝑊𝑖𝑗 = 1 ∗𝑊𝑖𝑗 +

𝟎 ∗𝑾𝒊𝒋 ≪ 𝟐 + (𝟏 ∗𝑾𝒊𝒋 ≪ 𝟒)



Analog CiM : Implementation details

⮚ Parallel and efficient GEMV implementation:

In Memory MVM
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CiM processing details(1)

⮚Workload Mapping

Weights

Input

Output

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tiling

Flatten weight 

kernel to form 2D 

weight matrix

Flatten Input 

windows to form 

Activation vectors

Divide Weight 

matrix into tiles 

based on memory 

array rows

Rearrange Output 

matrix into 3D 

tensor



CiM processing details(2)

⮚Workload Mapping
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Architecture: Spatial scalability

Network on Chip

Massively parallel accelerator –> Amenable to Data-Level Parallelism -> Highly efficient 
ML inference

Ankit, Roy, et. Al., “PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine 
Learning Inference”,  ASPLOS 2019.

Tile 0 Tile 1 Tile 2



PUMA: Resistive Crossbar based Programmable Architecture

➢Features
oAnalyze the memory-compute 

characteristics of ML applications 
oAn ISA-programmable accelerator built 

with hybrid CMOS-NVM technology

20

ML Framework (Tensorflow, Pytorch, 
Others)

Compile to PUMA ISA

PUMA Core
(NVM Crossbar + Digital CMOS) PUMA Tile (multi-core)

PUMA Chip
(dataflow architecture)

A. Ankit et al, ASPLOS, 2019



Challenges: NVM devices

➢Compared to CMOS:
✓ Non-volatility
✓ High density
✓ Low leakage
✓ Capable of in-memory compute 
×Write energy/latency

➢Current devices are highly 
non-linear
➢Expensive write operations and peripheral 
circuitry

➢RON/ROFF ratios are limited to ∼10×

➢RRAM has poor endurance.

➢More than 4-bits/cell is not reliable yet.

Optional Insert Copyright

[1] IEDM, 
2019

Property PCM RRAM MTJ CMOS

Multi-level cell Yes Yes No No

Storage Density High High High Low

RON/ROFF High High Low High

Non-volatility Yes Yes Yes No

Leakage Low Low Low High

Write Energy 6 nJ 2 nJ < 1 nJ < 0.1 nJ

Write Latency 150 ns 100 ns 10 ns < 1ns

Endurance 107 cycles 105 cycles 1015 cycles > 1016 cycles



Challenges: NVM Compute Macro

• NVM crossbars can have various non-idealities (parasitics, non-ideal 
devices)

• ADCs consume 58% and >80% of the total 
energy and area, respectively

8-bit MVM

Analog Operations Energy (pJ) Dig. Operations Energy (pJ)

MVM Energy 3.84 ALU 25.6

ADC Energy 128 Access (FMA) 480

Other peripherals 12.8

Total 144.6 Total 505.6

Energy

Area

Source: Ankit et al, ASPLOS 2019

• Such non-idealities can introduce varying 
amounts of functional errors based on 
different voltage and conductance

• Errors increase with higher crossbar sizes



GENIEx: A Generalized Approach to Emulating 
Non-Ideality in Memristive X-bars

➢ 𝑓 is a data-dependent 
non-linear function. 

➢ Neural networks are 
efficient tools for 
capturing the close 
inter-dependence of its 
inputs. 

➢ Neural network to 
model the behavior of 
non-ideal crossbars

𝐼𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑓(𝑉𝑖 , 𝐺𝑖𝑗(𝑉),

𝑅𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑅𝑠𝑖𝑛𝑘 , 𝑅𝑤𝑖𝑟𝑒)

Chakraborty et al, DAC 2020, 
https://arxiv.org/pdf/2003.06902.pdf

➢ GENIEx provides modeling capability for 
different non-idealities

https://arxiv.org/pdf/2003.06902.pdf


Resistive Crossbar Based Accelerator Design Flow



Performance Simulator – Scope

➢ Design space exploration of 
ML kernels

➢ Efficiency depends on multiple 
parameters
o Workload properties

o Architecture configuration

o Runtime Utilization

25

➢ Performance Bottleneck 
Analysis

➢ Runtime characteristics has 
complex dependency of 
workload and hardware 
properties

• CNNs show upto 13.0× reduction (least). High weight reuse, even at batch-size 1.

• MLPs show upto 80.1× reduction. No weight reuse, small models.

• LSTMs show upto 2446× reduction. Little Weight reuse, large models (billions of parameters).



Gen2 N40 RRAM CIM with Embedded Processor

Technology: TSMC 40nm RRAM

Key Innovation

➢ Full system demonstration with 
Embedded Cortex M3 processor

➢Highest effective RRAM density 
with >3X improvement of array 
density w.r.t. SOTA and >50 TOPS/W

Raychowdhury, GaTech, ISSCC 2022



Evaluation Board

https://muyachang.github.io/rram-pyterminal/

Block Model

MCU
Atmel 

Atmega32u2

Voltage 
Regulator

Analog Device  
LTC3676

External 
Flash

Adesto Tech. 
AT45DB321E

DAC
Burr-Brown 

DAC7612

Atmel
MCU

Voltage 
Regulator

Flash & DAC
P

o
w

er 
M

e
as.

Test chip

➢ Full python programmability and OS support.

➢ Currently being used as a test-vehicle for both research and undergraduate 
teaching

➢ Planning to share the evaluation board with CBRIC PIs so that we can use this as 
a test-bed for algorithmic and embedded system research



System Demonstration
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Revisit ADC: Near ADC-less CiM

30



ADC overhead in CiM accelerators

➢ Large percentage of area and energy profile dominated by 
ADCs.

31
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Mitigating Overhead with ADC-Less Design

➢ Area and energy profile dominated by ADCs in CiM
accelerators.

➢ ADC-Less Design: Use Sense Amplifiers for Analog to 
Digital conversion of Array output
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Saxena, Chakraborty, Roy, Towards ADC-Less Compute-In-Memory Accelerators for 
Energy Efficient Deep Learning, DATE 2022
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➢ ADC-Less CiM accelerators have 1b partial sums.
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CMOS SRAM and Non-volatile Memories 

Property PCM RRAM MTJ CMOS (SRAM)

Multi-level cell Yes Yes No No

Storage Density High High High Low

RON/ROFF High High Low High

Non-volatility Yes Yes Yes No

Leakage Low Low Low High

Cell Area 16F2 16F2 30-80F2 160F2 (6T), 
231F2 (8T)

Write Energy 6 nJ 2 nJ < 1 nJ < 0.1 nJ

Write Latency 150 ns 100 ns 10 ns < 1ns

Endurance 107 cycles 105 cycles 1015 cycles > 1016 cycles



In-Memory Bit-wise Vector Boolean Operations

Modifying the Peripheral Sensing Circuits to 
Read-out A Vector Boolean Function

Simultaneous Activated WLs



SRAM: In-Memory Bit-wise Boolean Operations

6T-SRAM
➢ Staggered WL activation to avoid short circuits between cells.
➢ Asymmetric SAs help detect bitwise NAND/NOR/XORs

Shanbhag et. al.



X-SRAM: Bit-Wise Vector Boolean Operations

Enhanced for
In-memory
Computing

Load RADDR1 RDEST0

Load RADDR2 RDEST1

ADD RDEST0 RDEST1 ROUT

Store RADDR3 ROUT

CiMADD RADDR1 RADDR2 RADDR3

Conventional 
Instructions

In-memory 
Instructions

System for In-memory Computing

Bitwise: AND/NAND, OR/NOR, XOR, IMP
Arithmetic: ADD/MULT with additional circuitry Single cycle Read-Compute-Store

Agrawal, A et al., 2018. X-sram,. IEEE TCAS-I



i-SRAM: Interleaved Wordlines for In-Memory Vector 
Boolean Operations

8T-SRAM
➢ Each row has two read word-lines, and bit-lines are connected to read and compute 

blocks
➢ Interleaved 6T cells with bit-lines connected to sense-amplifiers then compute circuits.
➢ The circuit schematic for NAND(AND)
➢ The circuit scheme for NOR(OR)

W-4
Bit-1

W-3
Bit-1

W-4
Bit-0

W-3
Bit-0

Jaiswal, et al. "i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs." IEEE Trans. 

CAS I: (2020).



In-memory Dot Product Computations

Memory Peripherals
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8T SRAM as a Multi-Bit Dot Product Engine
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CiM Macro

44

➢ More the number of ones in input or 
weights in a column, more discharge of BL.

➢ VRBL proportional to MAC output between 
inputs and weights.



IMC CMOS Cores (ANNs)
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CMOS Array: Sparsity Aware CiM Macro design
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➢Bit serial CiM acceleration provides opportunities to leverage
abundant bit level sparsity.

➢Different levels of input sparsity can be leveraged by
dynamically reconfiguring ADC precision (2b-6b).

2b and 3b SAR 

ADC combined 

to perform 4,5,6b 

conversion

Array and other

TIA

ADC

A. Ali et. al. , IEEE Solid State Circuits Letters, 2021
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IMC CMOS Cores (SNNs)
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SNNs

➢Challenges in current digital SNN 
hardware:
o Data transfer bottleneck to/from memory.

o Additional SNN-specific data movements
for processing VMEM for multiple timesteps.

o Limited functionality due to area and power 
expensive custom neuron circuitry.

➢Approach:
✓ Fused WMEM and VMEM CIM Array 

integrating all processing modes required 
for SNN inference – accumulate, threshold, 
reset etc.
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Significantly lower 
data transfer due 

to CIM

Proposed Approach:
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Organization of the Fused WMEM/VMEM Array

6TRWLo

RWLe

6TRWLo

RWLe

➢Different bit-precision requirements for weights and VMEM.
➢We propose a mapping strategy to efficiently use the SRAM area with minimal 

peripheral complexity:
o Fit more weights in each row using odd/even RWLs.

o Staggered alignment of corresponding VMEM data.

o Same peripherals are used by reconfiguring them in odd/even cycles.
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In-memory Computing Macro for SNNs: Chip Summary

➢We propose a 10T SRAM based CIM macro for 
SNN inference.

➢The macro consists of a fused WMEM and VMEM
and supports all processing modes required for 
SNN inference - accumulate, threshold, spike-
check, reset etc.

➢The macro also supports multiple neuron 
functionalities through various instruction 
sequences.

➢The macro also leverages sparsity in the input 
spikes for energy-efficiency.

➢The prototype chip was fabricated in 65nm LP 
CMOS process, achieves an energy-efficiency of 
0.99 TOPS/W @ 0.85V, 200MHz, for signed 11-bit 
operations.

➢We demonstrate sentiment classification using 
the intrinsic dynamics of SNNs achieving 
competitive accuracies with LSTMs.

Technology 65nm

Macro Area 0.089 mm2

Cell Type 10T

Memory
WMEM : 9kb

VMEM :  2.25kb

Weight/Vmem bits 6-bit/11-bit

Supply Voltage 0.7 ~ 1.2 V

Max. Frequency 500 MHz

Energy Efficiency

0.99 (TOPS/W) 

@200MHz, 0.85V

(signed 11-bit op)

2mm

Memory 

ArrayD
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PeripheralsCTRL
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51A. Agrawal et. al. , “IMPULSE….”,  IEEE Solid State Circuits Letters, 2021



Embedding ROM in a RAM

52



ROM Embedded RAM

Embedding ROM in CMOS and 1T-1R Arrays 
Enabling Near-Memory Computing through 

Lookup Tables



Embedding ROMs in RAMs (NVMs)
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Both ROM and RAM data are stored in the same bit-cell. The read cycle 
determines whether the ROM or the RAM data is being read.

D. Lee, K. Roy, IEEE EDL 2013 



Embedding ROMs in RAMs (STT-MRAM)
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➢ Majority-based vector addition

𝑪𝒐𝒖𝒕 = 𝑴𝒂𝒋(𝑨,𝑩, 𝑪𝒊𝒏)

𝑺 = 𝑴𝒂𝒋(𝑨,𝑩, 𝑪𝒊𝒏, 𝑪𝒐𝒖𝒕, 𝑪𝒐𝒖𝒕)

➢ Store data vectors in column-
based fashion

➢ The result of A+B 
addition is stored 
in the same 
column

➢ Massively-parallel 
vector additions in 
bit-serial mode

➢ No need for carry 
shifts across 
bitlines!

➢ Same subarray peripheral 
circuits

➢ Add 9 reserved rows for 
compute (<1% area overhead)

In-DRAM Low-cost Bit-serial Addition

Ali, Jaiswal, Roy, “In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM 
Technology,” TCAS-I, 2019
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In-DRAM Low-cost Bit-serial Addition
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Host Processor

(Top-k Sort)

Main Memory &
In-DRAM Computing

(Manhattan Distance)

Add/Sub 
requests Sum/Diff data

kNN Output

Test Data

Train Data

Processor X86, 2GHz

L1 Cache 32KB I- and D-Cache

L2 Cache 2 MB

Main memory
1024 MB, DDR3-1600,

1 channel, 1 rank, 8 banks

Using modified gem5 simulator from S.Xu et. al,ICAL’19

11.7x performance improvement

Case Study: Compute-in-DRAM based k-NN Acceleration

➢ Checks k closest samples, Query vector assigned to the group 
that holds majority among those k samples

➢ Mainly consists of two computation stages: Distance 
computation and Global top-k sort

➢ The k value: The number of closest samples to be checked 
➢ One-to-one distance computation: a large # of memory accesses

Ali, Jaiswal, Roy, “In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM 
Technology,” TCAS-I, 2019



Multiplication Primitive
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AND ADD

DRAM subarray

compute rows

➢Multiplication can be broken down in terms of AND and ADD operations.

➢Multiplication operation reserves 9 compute rows in the DRAM subarray.



PIM-DRAM Architecture
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➢ Special Function Units consist of ReLu, Pooling, Batch normalization and Quantize  units.

➢ The Multiplication operation happens in parallel across different DRAM subarrays for data in 
transposed layout.

➢ Every DRAM bank is allocated to a layer in the Neural Network.

➢ P1-P5 represents the degree of parallelism while mapping DNN layers on DRAM banks. 

4-bit act. and W

Roy, Ali, Raghunathan, PIM-DRAM: Accelerating Machine Learning 
Workloads using Processing in Commodity DRAM, IEEE JETCAS, 2021



C-BRIC Artifacts: Chip Gallery #1
In-Memory Computing, Digital DNN Accelerators
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Fig. 7: Microphotograph of the test-chip and summary of performance 
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C-BRIC Artifacts: Chip Gallery #2
Large-Area Sensing, RL, SNN, Optimization, Robotics
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Parting Thoughts…

➢While possibilities of achieving large improvements in 
inference latency and energy is possible…

➢There are several challenges…
oArray efficiency
oCross-bar non-idealities: Device non-linearity, access 

transistor/selector device, circuit non-idealities (line resistance, 
source/sink resistance), process variability

oReliability and endurance of non-volatile devices
oHigh write cost for NVMs
oA/D and D/A converters
oData movements from partial sums
o Training/mapping to the hardware – degradation over time for 

some NVM technologies
oNeed for vector operations and floating point operations
o SRAMs are large compared to emerging NVMs
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