In-Memory Computing based Machine Learning Accelerators: Opportunities and Challenges

KAUSHIK ROY DIRECTOR, CENTER FOR BRAIN-INSPIRED COMPUTING PURDUE UNIVERSITY KAUSHIK@PURDUE.EDU

Machine (Deep) Learning Saga

1997

Deep Blue vs. Kasparov ~15000W

2011

Watson Wins Jeopardy ~200000W

2016

AlphaGo vs. Sedol ~300000W

2018

Autonomous Driving

- Advent of Deep Learning, 2012
- Fueled by powerful hardware GPUs

Algorithm performance moving closer

Hardware cost moving farther

"Aspirations have grown faster than the technology available to satisfy them"

Al Compute Demands (Training)

Edge Intelligence: Efficiency Gap

Case study: Object recognition in a smart glass with a stateof-the-art accelerator

Google Edge TPU

Retinanet DNN* on a smart glass		
Performance		
Frames/sec	13.3	
Battery Life		
Energy/op	0.5 pJ/op	
Energy/frame	0.15 J/frame	
Time-to-die (2.1WH)	64 mins	

*300 GOPs/inference

Where do the in-efficiencies come from?

Algorithms

Hardware Architecture

Circuits and Devices

Ref: Venkataramani, S., Roy, K. and Raghunathan, A. "Efficient embedded learning for IoT devices." In 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 308-311. IEEE.

Beyond Compute Efficiency....

Center for Brain-Inspired Computing (C-BRIC): Approach

Design next-generation AI systems by drawing from neuroscience, mathematical foundations and using CMOS and beyond CMOS HW fabrics

Al Hardware Architecture: Circuits & Devices

Circuits and architectures that can efficiently implement the algorithms (possibly embody computing principles from the brain)

Background – In-Memory Computing

- Definition: Design approach that performs computation close to memory to overcome memory bottlenecks bandwidth, energy
- Effective for simple arithmetic bit-wise operations; fixed-point add, multiply, Truth-tables (ROMs/RAMs)
- Typical systems have much higher compute throughput than memory bandwidth(s)
- Lots of chip area are memory components (>=50% in TPU)
 Caches (L1, L2, ...), Register File, Scratchpad, Buffers

Computer Architecture: A Quantitative Approach

In-Memory Computing for ML

Machine Learning (Deep Learning)

Deep Learning needs – lots of matrix multiplications

Challenge: sustaining deep learning's insatiable compute demands

Technology: Non-Volatile Memories

CMOS SRAM and Non-volatile Memories

Property	РСМ	RRAM	LTM	CMOS (SRAM)
Multi-level cell	Yes	Yes	No	No
Storage Density	High	High	High	Low
R _{ON} /R _{OFF}	High	High	Low	High
Non-volatility	Yes	Yes	Yes	No
Leakage	Low	Low	Low	High
Cell Area	16F ²	16F ²	30-80F ²	160F ² (6T), 231F ² (8T)
Write Energy	6 nJ	2 nJ	< 1 nJ	< 0.1 nJ
Write Latency	150 ns	100 ns	10 ns	< 1ns
Endurance	10 ⁷ cycles	10 ⁵ cycles	10 ¹⁵ cycles	> 10 ¹⁶ cycles
(# - BR				

Fundamental building blocks of in-memory computing

Efficient MVM

Spatially Distributed Cores

Efficient Hardware Architecture: CiM

Bit-slicing (weights and inputs)

Bit-slicing: weight slicing and input streaming enable using low precision crossbars and low precision DACs to compose high precision MVMU

Analog CiM : Implementation details

In Memory MVM

CiM processing details(1)

Workload Mapping

CiM processing details(2)

BRIC

Architecture: Spatial scalability

Massively parallel accelerator -> Amenable to Data-Level Parallelism -> Highly efficient ML inference

Ankit, Roy, et. Al., "PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference", ASPLOS 2019.

PUMA: Resistive Crossbar based Programmable Architecture

• Analyze the memory-compute

Features

(NVM Crossbar + Digital CMOS)

PUMA Tile (multi-core)

E C

Device

High ON/OFF Ratio Device Linearity High Endurance Multi-level cells

Challenges: NVM devices

Compared to CMOS:

- ✓ Non-volatility
- ✓ High density
- ✓ Low leakage
- ✓ Capable of in-memory compute×Write energy/latency

Current devices are highly non-linear

- Expensive write operations and peripheral circuitry
- $> R_{ON}/R_{OFF}$ ratios are limited to $\sim 10 \times$
- ➢ RRAM has poor endurance.
- More than 4-bits/cell is not reliable yet.

Property	РСМ	RRAM	MTJ	CMOS
Multi-level cell	Yes	Yes	No	No
Storage Density	High	High	High	Low
R _{ON} /R _{OFF}	High	High	Low	High
Non-volatility	Yes	Yes	Yes	No
Leakage	Low	Low	Low	High
Write Energy	6 nJ	2 nJ	< 1 nJ	< 0.1 nJ
Write Latency	150 ns	100 ns	10 ns	< 1ns
Endurance	10 ⁷ cycles	10 ⁵ cycles	10 ¹⁵ cycles	> 10 ¹⁶ cycles

Challenges: NVM Compute Macro

- NVM crossbars can have various non-idealities (parasitics, non-ideal devices)
- Such non-idealities can introduce varying amounts of functional errors based on different voltage and conductance
- Errors increase with higher crossbar sizes
- ADCs consume 58% and >80% of the total energy and area, respectively

8-bit MVM

Large Crossbar Size Low cost peripheral overhead Good selector device Source/Sink/Line resistances

Macro

GENIEx: A Generalized Approach to Emulating Non-Ideality in Memristive X-bars

 $I_{column} = f(V_i, G_{ij}(V),$ $R_{source}, R_{sink}, R_{wire}$)

- f is a data-dependent non-linear function.
- Neural networks are efficient tools for capturing the close inter-dependence of its inputs.
- Neural network to model the behavior of non-ideal crossbars

Chakraborty et al, DAC 2020, https://arxiv.org/pdf/2003.06902.pdf

GENIEx provides modeling capability for different non-idealities

Resistive Crossbar Based Accelerator Design Flow

Performance Simulator – Scope

Core7

Tile3

Design space exploration of ML kernels

- Efficiency depends on multiple parameters
 - Workload properties
 - Architecture configuration
 - Runtime Utilization

Performance Bottleneck Analysis

- Runtime characteristics has complex dependency of workload and hardware properties
- CNNs show upto 13.0× reduction (least). High weight reuse, even at batch-size 1.
- MLPs show upto 80.1× reduction. No weight reuse, small models.
- LSTMs show upto 2446× reduction. Little Weight reuse, large models (billions of parameters).

Gen2 N40 RRAM CIM with Embedded Processor

Technology: TSMC 40nm RRAM

Key Innovation

- Full system demonstration with Embedded Cortex M3 processor
- Highest effective RRAM density with >3X improvement of array density w.r.t. SOTA and >50 TOPS/W Raychowdhury, GaTech, ISSCC 2022

Evaluation Board

https://muyachang.github.io/rram-pyterminal/

- Full python programmability and OS support.
- Currently being used as a test-vehicle for both research and undergraduate teaching
- Planning to share the evaluation board with CBRIC PIs so that we can use this as a test-bed for algorithmic and embedded system research

System Demonstration

Revisit ADC: Near ADC-less CiM

ADC overhead in CiM accelerators

Large percentage of area and energy profile dominated by ADCs.

Mitigating Overhead with ADC-Less Design

- Area and energy profile dominated by ADCs in CiM accelerators.
- ADC-Less Design: Use Sense Amplifiers for Analog to Digital conversion of Array output

Ê

Saxena, Chakraborty, Roy, Towards ADC-Less Compute-In-Memory Accelerators for Energy Efficient Deep Learning, DATE 2022

SW co-design for ADC-Less CiM Accelerators

> ADC-Less CiM accelerators have 1b partial sums.

CMOS SRAM and Non-volatile Memories

Property	PCM	RRAM	MTJ	CMOS (SRAM)
Multi-level cell	Yes	Yes	No	No
Storage Density	High	High	High	Low
R _{ON} /R _{OFF}	High	High	Low	High
Non-volatility	Yes	Yes	Yes	No
Leakage	Low	Low	Low	High
Cell Area	16F ²	16F ²	30-80F ²	160F ² (6T), 231F ² (8T)
Write Energy	6 nJ	2 nJ	< 1 nJ	< 0.1 nJ
Write Latency	150 ns	100 ns	10 ns	< 1ns
Endurance	10 ⁷ cycles	10 ⁵ cycles	10 ¹⁵ cycles	> 10 ¹⁶ cycles
				BF

C

In-Memory Bit-wise Vector Boolean Operations

SRAM: In-Memory Bit-wise Boolean Operations

Shanbhag et. al.

6T-SRAM

- Staggered WL activation to avoid short circuits between cells.
- Asymmetric SAs help detect bitwise NAND/NOR/XORs

X-SRAM: Bit-Wise Vector Boolean Operations

Agrawal, A et al., 2018. X-sram,. IEEE TCAS-I

i-SRAM: Interleaved Wordlines for In-Memory Vector Boolean Operations

8T-SRAM

- Each row has two read word-lines, and bit-lines are connected to read and compute blocks
- Interleaved 6T cells with bit-lines connected to sense-amplifiers then compute circuits.
- The circuit schematic for NAND(AND)
- The circuit scheme for NOR(OR)

Jaiswal, et al. "i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs." *IEEE Trans. CAS I:* (2020).

In-memory Dot Product Computations

In-Memory Dot Product Acceleration by use of Current-Mode Computations in SRAMs

8T SRAM as a Multi-Bit Dot Product Engine

A. Jaiswal, I. Chakraborty et al , under review in TVLSI, 2018

CiM Macro

IMC CMOS Cores (ANNs)

CMOS Array: Sparsity Aware CiM Macro design

- Bit serial CiM acceleration provides opportunities to leverage abundant bit level sparsity.
- Different levels of input sparsity can be leveraged by dynamically reconfiguring ADC precision (2b-6b).

System with sparsity aware Core

IMC CMOS Cores (SNNs)

C

SNNs

Challenges in current digital SNN hardware:

- Data transfer bottleneck to/from memory.
- Additional SNN-specific data movements for processing V_{MEM} for multiple timesteps.
- Limited functionality due to area and power expensive custom neuron circuitry.
- Approach:
- Fused W_{MEM} and V_{MEM} CIM Array integrating all processing modes required for SNN inference – accumulate, threshold, reset etc.

Conventional Approach:

Organization of the Fused W_{MEM}/V_{MEM} Array

Different bit-precision requirements for weights and V_{MEM}.

- We propose a mapping strategy to efficiently use the SRAM area with minimal peripheral complexity:
 - Fit more weights in each row using odd/even RWLs.
 - ${\rm o}$ Staggered alignment of corresponding $V_{\rm MEM}$ data.
 - Same peripherals are used by reconfiguring them in odd/even cycles.

In-memory Computing Macro for SNNs: Chip Summary

- We propose a 10T SRAM based CIM macro for SNN inference.
- The macro consists of a fused W_{MEM} and V_{MEM} and supports all processing modes required for SNN inference - accumulate, threshold, spikecheck, reset etc.
- The macro also supports multiple neuron functionalities through various instruction sequences.
- The macro also leverages sparsity in the input spikes for energy-efficiency.
- The prototype chip was fabricated in 65nm LP CMOS process, achieves an energy-efficiency of 0.99 TOPS/W @ 0.85V, 200MHz, for signed 11-bit operations.
- We demonstrate sentiment classification using the intrinsic dynamics of SNNs achieving competitive accuracies with LSTMs.

Technology	65nm
Macro Area	0.089 mm ²
Cell Type	10T
Memory	W _{MEM} : 9kb V _{MEM} : 2.25kb
Weight/Vmem bits	6-bit/11-bit
Supply Voltage	0.7 ~ 1.2 V
Max. Frequency	500 MHz
Energy Efficiency	0.99 (TOPS/W) @200MHz, 0.85V (signed 11-bit op)

A. Agrawal et. al., "IMPULSE....", IEEE Solid State Circuits Letters, 2021

Embedding ROM in a RAM

ROM Embedded RAM

Embedding ROM in CMOS and 1T-1R Arrays Enabling Near-Memory Computing through Lookup Tables

Embedding ROMs in RAMs (NVMs)

Both ROM and RAM data are stored in the same bit-cell. The read cycle determines whether the ROM or the RAM data is being read.

D. Lee, K. Roy, IEEE EDL 2013

Embedding ROMs in RAMs (STT-MRAM)

D. Lee, K. Roy, IEEE EDL 2013

Computing-In-DRAM

In-DRAM Low-cost Bit-serial Addition

- Majority-based vector addition
 - $C_{out} = Maj(A, B, C_{in})$ $S = Maj(A, B, C_{in}, \overline{C_{out}}, \overline{C_{out}})$
- Store data vectors in columnbased fashion
- Same subarray peripheral circuits
- Add 9 reserved rows for compute (<1% area overhead)

- The result of A+B addition is stored in the same column
- Massively-parallel vector additions in bit-serial mode
- No need for carry shifts across bitlines!

Ali, Jaiswal, Roy, "In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM Technology," TCAS-I, 2019

In-DRAM Low-cost Bit-serial Addition

Multiple row activation to calculate Maj(A,B,C,D,E)

An example of 1-bit addition of two vectors A and B

Case Study: Compute-in-DRAM based k-NN Acceleration

Checks k closest samples, Query vector assigned to the group

that holds majority among those k samples

Mainly consists of two computation stages: Distance \geq computation and Global top-k sort The k value: The number of closest samples to be checked One-to-one distance computation: a large # of memory accesses \geq Processor X86, 2GHz L1 Cache 32KB I- and D-Cache **Host Processor** kNN Output L2 Cache 2 MB 1024 MB, DDR3-1600, Main memory (Top-k Sort) 1 channel, 1 rank, 8 banks Add/Sub Using modified gem5 simulator from S.Xu et. al, ICAL'19 Sum/Diff data requests 1 cution 0.8 Main Memory & $\cap c$ **In-DRAM Computing 11.7x performance improvement** Normalized Tir (Manhattan Distance) 0.2 Ω Test Data Proposed **Baseline** Train Data System

Ali, Jaiswal, Roy, "In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM Technology," TCAS-I, 2019

E

Multiplication Primitive

Multiplication can be broken down in terms of AND and ADD operations.
 Multiplication operation reserves 9 compute rows in the DRAM subarray.

PIM-DRAM Architecture

<u></u>

- Special Function Units consist of ReLu, Pooling, Batch normalization and Quantize units.
- The Multiplication operation happens in parallel across different DRAM subarrays for data in transposed layout.
- Every DRAM bank is allocated to a layer in the Neural Network.
- P1-P5 represents the degree of parallelism while mapping DNN layers on DRAM banks.

C-BRIC Artifacts: Chip Gallery #1 In-Memory Computing, Digital DNN Accelerators

C-BRIC Artifacts: Chip Gallery #2 Large-Area Sensing, RL, SNN, Optimization, Robotics

Hybrid 130nm CMOS / LAE tactile sensing array ISSCC'19

LAE 13.56 MHz RFID reader array SSCL'18

LAE 2.4 GHz monolithically-integrable reconfigurable antenna IEDM'20

LAE 1 GHz Phased Array Nature Electronics'21

LAE 2.4 GHz passive backscattering beamformer for event-driven sensing

65nm: OPTIMO 49-core optimization processor CICC'19, JSSC'19

Stochastic binary SNN 90nm: TCAS-I'20

65nm: NeuroSLAM SNN-based visual SLAM acc. ISSCC'20, JSSC'21

Tiny-RL, analog compute 130nm: JSSC'18

65nm: Edge SoC with edge-cloud load balancing S' VLSI'20, JSSC (review)

Edge AI for swarm robotics 130nm: ISSCC'18, JSSC'19

Princeton Georgia Tech Purdue (w/ Intel)

Parting Thoughts...

While possibilities of achieving large improvements in inference latency and energy is possible...

➤There are several challenges...

- o Array efficiency
- Cross-bar non-idealities: Device non-linearity, access transistor/selector device, circuit non-idealities (line resistance, source/sink resistance), process variability
- o Reliability and endurance of non-volatile devices
- o High write cost for NVMs
- o A/D and D/A converters
- o Data movements from partial sums
- Training/mapping to the hardware degradation over time for some NVM technologies
- Need for vector operations and floating point operations
- o SRAMs are large compared to emerging NVMs

Neuro-electronics Research Laboratory

Acknowledgement

