
In-Memory Computing based
Machine Learning Accelerators:
Opportunities and Challenges
KAUSHIK ROY

DIRECTOR, CENTER FOR BRAIN-INSPIRED COMPUTING

PURDUE UNIVERSITY

KAUSHIK@PURDUE.EDU

1

Machine (Deep) Learning Saga

2

Deep Blue vs. Kasparov
~15000W

Watson Wins Jeopardy
~200000W

1997 2011 2016

AlphaGo vs. Sedol
~300000W

Algorithm performance moving closer

Hardware cost moving farther

2018

• Advent of Deep Learning, 2012
• Fueled by powerful hardware - GPUs

Autonomous Driving
~$$$$$

“Aspirations have grown faster than the technology
available to satisfy them”

AI Compute Demands (Training)

33

Edge Intelligence: Efficiency Gap

➢Case study: Object recognition in a smart glass with a state-
of-the-art accelerator

*300 GOPs/inference

4
Ref: Venkataramani, S., Roy, K. and Raghunathan, A. “Efficient embedded learning for IoT devices.” In 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 308-311. IEEE.

Where do the in-efficiencies come from?

Algorithms Hardware Architecture Circuits and Devices

Battery Life

Energy/op 0.5 pJ/op

Energy/frame 0.15 J/frame

Time-to-die
(2.1WH)

64 mins

Performance

Frames/sec 13.3

Retinanet DNN* on a smart glass

+
Google Edge TPU

Beyond Compute Efficiency….

➢Learning with less data

➢Generalization & Robustness/
Security

➢Lifelong learning

5

=

𝑋𝑐𝑙𝑒𝑎𝑛
97.3% confidence

Macaw

+

∆

0.005 ×

Adversarial
Perturbation

𝑋𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦
88.9% confidence

Bookcase

Center for Brain-Inspired Computing (C-BRIC): Approach

➢Design next-generation AI systems by drawing from
neuroscience, mathematical foundations and using CMOS and
beyond CMOS HW fabrics

• Network topology
• Information representations
• Learning models

• Theory of learning
• Network optimization
• Distributed learning
• Safety & robustness

analysis
• In-memory compute fabrics
• Stochastic & approximate hw
• Algorithm/Hw codesign

AI Hardware Architecture: Circuits & Devices

➢Circuits and architectures that can efficiently implement the
algorithms (possibly embody computing principles from the
brain)
o Near-/In-Memory Computing
o Approximate and stochastic hardware
o Neuromorphic devices and interconnects

Accelerators

In-memory
computingApproximate

& Stochastic
Hardware

Neuromorphic
Devices

Multicores/GPUs

~104

Energy
Gap

7

Background – In-Memory Computing

➢Definition: Design approach that performs computation close to memory to
overcome memory bottlenecks – bandwidth, energy

➢Effective for simple arithmetic - bit-wise operations; fixed-point add, multiply,
Truth-tables (ROMs/RAMs)

➢Typical systems have much higher compute throughput than memory
bandwidth(s)

➢Lots of chip area are memory components (>=50% in TPU)
o Caches (L1, L2, …), Register File, Scratchpad, Buffers

8

TPU Floorplan, ISCA 2017Computer Architecture: A Quantitative Approach

In-Memory Computing for ML

9

WL 1

BL 128BL1

2KB Memory

WL 128

Typical Memory Access

Bits Accessed = 128

Operation = Read/Write

In-Memory Computing

Analog

Bits Accessed = 4*128

Operation = Matrix Vector Multiply

Vout = M * Vin

M
:

4
×

6
4

Vin
T: 1×4

Vout: 1×64

2KB Memory

Bits Accessed = 2*128

Operation = Bit-wise AND

Vout = V1 AND V2

In-Memory Computing

Digital

2KB Memory

V1

V2

Vout

Non Volatile
Memory

SRAM

Jain et al. TVLSI’17, Abbrogio et al. Nature’18,
Cai et al. Nature Elec.’19, Xue et al. ISSCC’20, Liu et al., ISSCC’20

Biswas et al. ISSCC’18, Valavi et al. JSSC’19, Si et al. ISSCC’19, Jaiswal et al. TVLSI’20,
Dong et al. ISSCC’20 (TSMC – 7nm)

Peripherals

ROM/RAM Lee et. al. EDL 2013, Lee et. al. TVLSI 2013,

Machine Learning (Deep Learning)

➢Deep Learning needs – lots of matrix multiplications

10

Bruce Fleischer et al, IBM Research, 2018

➢ Challenge: sustaining deep learning’s insatiable compute demands

Technology: Non-Volatile Memories

I+ = +∑vigi
Excitory Input

LCH
+

m

LCH
–

I– = –∑vigi
Inhibitory

Input

Preset

NM

FM

IREF

IREF ± |Iin |

Integrator

VOUT

RRAM

Oxygen
ions

Oxygen
vacanciesFilament

Metal
Oxide

Top Electrode

Bottom Electrode

PCM

Top Electrode

Bottom Electrode

H
e

at
er

PCM

Switching
Region

Insulator

VS=0V

VD

VG

VG

t

t

ID ID

CMOS SRAM and Non-volatile Memories

Property PCM RRAM MTJ CMOS (SRAM)

Multi-level cell Yes Yes No No

Storage Density High High High Low

RON/ROFF High High Low High

Non-volatility Yes Yes Yes No

Leakage Low Low Low High

Cell Area 16F2 16F2 30-80F2 160F2 (6T),
231F2 (8T)

Write Energy 6 nJ 2 nJ < 1 nJ < 0.1 nJ

Write Latency 150 ns 100 ns 10 ns < 1ns

Endurance 107 cycles 105 cycles 1015 cycles > 1016 cycles

Fundamental building blocks of in-memory computing

IN

V0

V1

VN

...

...

G11 G1j G1N

G21 G22 G2j G2N

GN1 GN2 GNj GNN

I1 I2 Ij

...

...

...

G12

I11

I21

IN1

Ij = Iij = ViGij

...

...

...

Efficient MVM Spatially Distributed Cores

...

...

...

...

...

In
p

u
t

E
n

c
o

d
in

g W
L
 D

e
c
o

d
e

r

S&H

Analog to Digital Conversion

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

Two-terminal Devices Three-terminal Devices

T1

T2

T1

T2T3

T1

T2

T1

T2

T1

T2T3

PCM RRAM STT-MTJ SHE-MTJ SHE-DWM-MTJ

The Peripherals
VREF+

VREF-

Vin
2N comparators

D
ec

o
de

r

Digital
Output

Vin

DAC

SAR Logic

clk
IBL

VOUT

RF

In-Memory Computing Memory Devices

Selector or
Transistor

A to DI to V

13

CMOS

Chakraborty et. al. Resistive Crossbars as Approximate Hardware Building Blocks for
Machine Learning: Opportunities and Challenges, Proc. of IEEE, 2020

Efficient Hardware Architecture: CiM

IN

V0

V1

VN

...

...

G11 G1j G1N

G21 G22 G2j G2N

GN1 GN2 GNj GNN

I1 I2 Ij

...

...

...

G12

I11

I21

IN1

Ij = Iij = ViGij

...

...

...

Efficient MVM Spatially Distributed Cores

...

...

...

...

...

In
p

u
t

E
n

c
o

d
in

g W
L
 D

e
c
o

d
e

r

S&H

Analog to Digital Conversion

Shift and Add

MUX & TIA

Access

Device

S&H S&H S&H

Two-terminal Devices Three-terminal Devices

T1

T2

T1

T2T3

T1

T2

T1

T2

T1

T2T3

PCM RRAM STT-MTJ SHE-MTJ SHE-DWM-MTJ

The Peripherals
VREF+

VREF-

Vin
2N comparators

D
ec

o
de

r

Digital
Output

Vin

DAC

SAR Logic

clk
IBL

VOUT

RF

In-Memory Computing Memory Devices

Selector or
Transistor

A to DI to V

14

CMOS

Chakraborty et. al. Resistive Crossbars as Approximate Hardware Building Blocks for
Machine Learning: Opportunities and Challenges, Proc. of IEEE, 2020

Bit-slicing (weights and inputs)

➢ Bit-slicing: weight slicing and input streaming enable using low precision crossbars and
low precision DACs to compose high precision MVMU

15

Wi,j

[1:0]
Wi,j

[3:2]

Vi Vi

SnA (Weight slicing)
𝑉𝑖 ∗ 𝑊𝑖𝑗
= (𝑉𝑖 ∗ 𝑊𝑖𝑗[1: 0]) +
(𝑽𝒊 ∗ 𝑾𝒊𝒋 𝟑: 𝟐 ≪ 𝟐)

Wi,

j

Vi=5 or [101]

SnA (Bit streaming)
𝑉𝑖 ∗ 𝑊𝑖𝑗 = 1 ∗𝑊𝑖𝑗 +

𝟎 ∗𝑾𝒊𝒋 ≪ 𝟐 + (𝟏 ∗𝑾𝒊𝒋 ≪ 𝟒)

Analog CiM : Implementation details

⮚ Parallel and efficient GEMV implementation:

In Memory MVM

W

L

D

A
c
ti

v
a

ti
o

n
 v

e
c
to

rs

2D Weight matrix

4 8 1 0

5 7 11 4

9 10 15 13

2 6 0 1

4 8 1 0

5 7 11 4

9 10 15 13

2 6 0 1

11

4

2

15

11

4

2

15

1 0

1 1

2

0

1

2

2

1

2

1

0

3

2

2

1101

Map matrix

values to

memory array

Vector inputs

applied to word

lines of memory

array

Bit slice high

precision weight

values to multiple

low precision

memory devices

Divide high

precision

activation values

and stream over

multiple cycles

x

Important design points:

• Bit slice of weights

• Bit stream of activations

• Memory array size

• ADC precision

SnA

MUX and ADC

0

2

3

0

1

3

3

0

0

1

3

0

0

0

1

1

0010

1000

1111

CiM processing details(1)

⮚Workload Mapping

Weights

Input

Output

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tiling

Flatten weight

kernel to form 2D

weight matrix

Flatten Input

windows to form

Activation vectors

Divide Weight

matrix into tiles

based on memory

array rows

Rearrange Output

matrix into 3D

tensor

CiM processing details(2)

⮚Workload Mapping

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tiling

Different memory

arrays in a tile

store different bit

slices of weight

matrix tile

Intra Tile

Accumulation

of partial

sums using

Shift and Add

block.

Inter tile

Accumulation

using NoC

Tile

W

L

D

MUX

ADC

W

L

D

MUX

ADC

W

L

D

MUX

ADC

Tile

W

L

D

MUX

ADC

W

L

D

MUX

ADC

W

L

D

MUX

ADC

Architecture: Spatial scalability

Network on Chip

Massively parallel accelerator –> Amenable to Data-Level Parallelism -> Highly efficient
ML inference

Ankit, Roy, et. Al., “PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine
Learning Inference”, ASPLOS 2019.

Tile 0 Tile 1 Tile 2

PUMA: Resistive Crossbar based Programmable Architecture

➢Features
oAnalyze the memory-compute

characteristics of ML applications
oAn ISA-programmable accelerator built

with hybrid CMOS-NVM technology

20

ML Framework (Tensorflow, Pytorch,
Others)

Compile to PUMA ISA

PUMA Core
(NVM Crossbar + Digital CMOS) PUMA Tile (multi-core)

PUMA Chip
(dataflow architecture)

A. Ankit et al, ASPLOS, 2019

Challenges: NVM devices

➢Compared to CMOS:
✓ Non-volatility
✓ High density
✓ Low leakage
✓ Capable of in-memory compute
×Write energy/latency

➢Current devices are highly
non-linear
➢Expensive write operations and peripheral
circuitry

➢RON/ROFF ratios are limited to ∼10×

➢RRAM has poor endurance.

➢More than 4-bits/cell is not reliable yet.

Optional Insert Copyright

[1] IEDM,
2019

Property PCM RRAM MTJ CMOS

Multi-level cell Yes Yes No No

Storage Density High High High Low

RON/ROFF High High Low High

Non-volatility Yes Yes Yes No

Leakage Low Low Low High

Write Energy 6 nJ 2 nJ < 1 nJ < 0.1 nJ

Write Latency 150 ns 100 ns 10 ns < 1ns

Endurance 107 cycles 105 cycles 1015 cycles > 1016 cycles

Challenges: NVM Compute Macro

• NVM crossbars can have various non-idealities (parasitics, non-ideal
devices)

• ADCs consume 58% and >80% of the total
energy and area, respectively

8-bit MVM

Analog Operations Energy (pJ) Dig. Operations Energy (pJ)

MVM Energy 3.84 ALU 25.6

ADC Energy 128 Access (FMA) 480

Other peripherals 12.8

Total 144.6 Total 505.6

Energy

Area

Source: Ankit et al, ASPLOS 2019

• Such non-idealities can introduce varying
amounts of functional errors based on
different voltage and conductance

• Errors increase with higher crossbar sizes

GENIEx: A Generalized Approach to Emulating
Non-Ideality in Memristive X-bars

➢ 𝑓 is a data-dependent
non-linear function.

➢ Neural networks are
efficient tools for
capturing the close
inter-dependence of its
inputs.

➢ Neural network to
model the behavior of
non-ideal crossbars

𝐼𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑓(𝑉𝑖 , 𝐺𝑖𝑗(𝑉),

𝑅𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑅𝑠𝑖𝑛𝑘 , 𝑅𝑤𝑖𝑟𝑒)

Chakraborty et al, DAC 2020,
https://arxiv.org/pdf/2003.06902.pdf

➢ GENIEx provides modeling capability for
different non-idealities

https://arxiv.org/pdf/2003.06902.pdf

Resistive Crossbar Based Accelerator Design Flow

Performance Simulator – Scope

➢ Design space exploration of
ML kernels

➢ Efficiency depends on multiple
parameters
o Workload properties

o Architecture configuration

o Runtime Utilization

25

➢ Performance Bottleneck
Analysis

➢ Runtime characteristics has
complex dependency of
workload and hardware
properties

• CNNs show upto 13.0× reduction (least). High weight reuse, even at batch-size 1.

• MLPs show upto 80.1× reduction. No weight reuse, small models.

• LSTMs show upto 2446× reduction. Little Weight reuse, large models (billions of parameters).

Gen2 N40 RRAM CIM with Embedded Processor

Technology: TSMC 40nm RRAM

Key Innovation

➢ Full system demonstration with
Embedded Cortex M3 processor

➢Highest effective RRAM density
with >3X improvement of array
density w.r.t. SOTA and >50 TOPS/W

Raychowdhury, GaTech, ISSCC 2022

Evaluation Board

https://muyachang.github.io/rram-pyterminal/

Block Model

MCU
Atmel

Atmega32u2

Voltage
Regulator

Analog Device
LTC3676

External
Flash

Adesto Tech.
AT45DB321E

DAC
Burr-Brown

DAC7612

Atmel
MCU

Voltage
Regulator

Flash & DAC
P

o
w

er
M

e
as.

Test chip

➢ Full python programmability and OS support.

➢ Currently being used as a test-vehicle for both research and undergraduate
teaching

➢ Planning to share the evaluation board with CBRIC PIs so that we can use this as
a test-bed for algorithmic and embedded system research

System Demonstration

28

Revisit ADC: Near ADC-less CiM

30

ADC overhead in CiM accelerators

➢ Large percentage of area and energy profile dominated by
ADCs.

31

0.58

0.09

0.19 0.15

0.81

0.02

0.17
0.001

Mitigating Overhead with ADC-Less Design

➢ Area and energy profile dominated by ADCs in CiM
accelerators.

➢ ADC-Less Design: Use Sense Amplifiers for Analog to
Digital conversion of Array output

0.17

0.02

0.81

0.001

Area

0.19

0.09

0.58

0.15

 DAC

 ADC

 Memory array

 Digital

WL Driver
ADC
Array
DigitalEnergy

MUX

ADC

W
L
D

Low
Area

Low
Power

Low
Latency

Energy
Efficient

SA

W
L
D

SA SA SA

Saxena, Chakraborty, Roy, Towards ADC-Less Compute-In-Memory Accelerators for
Energy Efficient Deep Learning, DATE 2022

SA

W
L
D

SA SA SA

0

+a

+a

-a

-a

0

0

+a

+a

-a

-a

0

0

+a

+a

-a

-a

0

SW co-design for ADC-Less CiM Accelerators

➢ ADC-Less CiM accelerators have 1b partial sums.

➢ Partial sum quantization aware training is needed.

➢ Trainable quantization function to get high accuracy.

0

+a

+a

-a

-a

0

Forward pass
Approximation

Scale
Factor ‘a’

is
trained

0

+a

+a

-a

-a

0

High Accuracy on CIFAR-10 using Resnet-20

CMOS SRAM and Non-volatile Memories

Property PCM RRAM MTJ CMOS (SRAM)

Multi-level cell Yes Yes No No

Storage Density High High High Low

RON/ROFF High High Low High

Non-volatility Yes Yes Yes No

Leakage Low Low Low High

Cell Area 16F2 16F2 30-80F2 160F2 (6T),
231F2 (8T)

Write Energy 6 nJ 2 nJ < 1 nJ < 0.1 nJ

Write Latency 150 ns 100 ns 10 ns < 1ns

Endurance 107 cycles 105 cycles 1015 cycles > 1016 cycles

In-Memory Bit-wise Vector Boolean Operations

Modifying the Peripheral Sensing Circuits to
Read-out A Vector Boolean Function

Simultaneous Activated WLs

SRAM: In-Memory Bit-wise Boolean Operations

6T-SRAM
➢ Staggered WL activation to avoid short circuits between cells.
➢ Asymmetric SAs help detect bitwise NAND/NOR/XORs

Shanbhag et. al.

X-SRAM: Bit-Wise Vector Boolean Operations

Enhanced for
In-memory
Computing

Load RADDR1 RDEST0

Load RADDR2 RDEST1

ADD RDEST0 RDEST1 ROUT

Store RADDR3 ROUT

CiMADD RADDR1 RADDR2 RADDR3

Conventional
Instructions

In-memory
Instructions

System for In-memory Computing

Bitwise: AND/NAND, OR/NOR, XOR, IMP
Arithmetic: ADD/MULT with additional circuitry Single cycle Read-Compute-Store

Agrawal, A et al., 2018. X-sram,. IEEE TCAS-I

i-SRAM: Interleaved Wordlines for In-Memory Vector
Boolean Operations

8T-SRAM
➢ Each row has two read word-lines, and bit-lines are connected to read and compute

blocks
➢ Interleaved 6T cells with bit-lines connected to sense-amplifiers then compute circuits.
➢ The circuit schematic for NAND(AND)
➢ The circuit scheme for NOR(OR)

W-4
Bit-1

W-3
Bit-1

W-4
Bit-0

W-3
Bit-0

Jaiswal, et al. "i-SRAM: Interleaved Wordlines for Vector Boolean Operations Using SRAMs." IEEE Trans.

CAS I: (2020).

In-memory Dot Product Computations

Memory Peripherals

D
ig

it
al

 t
o

A

n
al

o
g

C
o

n
ve

rt
er

s

Analog to
Digital

Converters

ROM
&

RAM

SRAM
Array

In
p

u
t

V
ec

to
r

Output Vector

In-Memory Dot Product Acceleration by use of
Current-Mode Computations in SRAMs

8T SRAM as a Multi-Bit Dot Product Engine

42

WWL WWL

RBL

RWL

WBL WBLB

Q QB

M1

M2

SL

Storage cell

RBL

VDD

M1

M2

vi

Q IRBL

Bit-cell RBL

M1

M2

Vbias

Q IRBL

Bit-cell
vi

Config-A Config-B

Sensing Circuit Sensing Circuit

(a) (b) (c)

WWL WWL

RBL

RWL

WBL WBLB

Q QB

M1

M2

SL

Storage cell

RBL

VDD

M1

M2

vi

Q IRBL

Bit-cell RBL

M1

M2

Vbias

Q IRBL

Bit-cell
vi

Config-A Config-B

Sensing Circuit Sensing Circuit

(a) (b) (c)
Modified Read Port

Data Stored
in SRAM

Vi on the
RWL

8T SRAM Cell

M1
M2

Vbias

ΣVi.WiThe Dot Product =

Vi: Analog Voltages on RWL or SL

Wi: Data Stored in SRAM

Summation: KCL addition

Q30 Q20 Q10 Q00

Vin0

Q31 Q21
Q11 Q01

Vin1

Sensing Circuit

RBL RBL RBL RBL
Inputs

Vbias

Vbias

MSB LSB
Weights

8W 4W 2W W

Iout = Σf(Vini, Qij)

A. Jaiswal, I. Chakraborty et al , under review in TVLSI, 2018

CiM Macro

44

➢ More the number of ones in input or
weights in a column, more discharge of BL.

➢ VRBL proportional to MAC output between
inputs and weights.

IMC CMOS Cores (ANNs)

45

CMOS Array: Sparsity Aware CiM Macro design

46

➢Bit serial CiM acceleration provides opportunities to leverage
abundant bit level sparsity.

➢Different levels of input sparsity can be leveraged by
dynamically reconfiguring ADC precision (2b-6b).

2b and 3b SAR

ADC combined

to perform 4,5,6b

conversion

Array and other

TIA

ADC

A. Ali et. al. , IEEE Solid State Circuits Letters, 2021

N

O

D

E

T

I

L

E

C

R

O

E

System with sparsity aware Core

Reconfig ADC 5b ADC 6b ADC

2.2X

improvement

in inference

energy

Sparsity aware

macro

IMC CMOS Cores (SNNs)

48

SNNs

➢Challenges in current digital SNN
hardware:
o Data transfer bottleneck to/from memory.

o Additional SNN-specific data movements
for processing VMEM for multiple timesteps.

o Limited functionality due to area and power
expensive custom neuron circuitry.

➢Approach:
✓ Fused WMEM and VMEM CIM Array

integrating all processing modes required
for SNN inference – accumulate, threshold,
reset etc.

Compute Unit

V
M

EM

SR
A

M

Spikes

WMEM

SRAM

Data transfer
bottleneck

N
eu

ro
n

Fu

n
ct

io
n

al
it

y

Limited functionality due to
custom neuron circuitry

Conventional Approach:

Fused WMEM and VMEM

CIM SRAM
Spikes

Embedded neuron
functionality

Significantly lower
data transfer due

to CIM

Proposed Approach:

49

Organization of the Fused WMEM/VMEM Array

6TRWLo

RWLe

6TRWLo

RWLe

➢Different bit-precision requirements for weights and VMEM.
➢We propose a mapping strategy to efficiently use the SRAM area with minimal

peripheral complexity:
o Fit more weights in each row using odd/even RWLs.

o Staggered alignment of corresponding VMEM data.

o Same peripherals are used by reconfiguring them in odd/even cycles.

MODE

PRECHARGE
T

R
IP

L
E

 R
O

W
-D

E
C

O
D

E
R

CTRL

ADDR1

ADDR2

ADDR3

WMEM

COLUMN PERIPHERALS

6-bit

12-bit

ODD

Weight
Column

EVEN

Weight
Column

VMEM

50

In-memory Computing Macro for SNNs: Chip Summary

➢We propose a 10T SRAM based CIM macro for
SNN inference.

➢The macro consists of a fused WMEM and VMEM
and supports all processing modes required for
SNN inference - accumulate, threshold, spike-
check, reset etc.

➢The macro also supports multiple neuron
functionalities through various instruction
sequences.

➢The macro also leverages sparsity in the input
spikes for energy-efficiency.

➢The prototype chip was fabricated in 65nm LP
CMOS process, achieves an energy-efficiency of
0.99 TOPS/W @ 0.85V, 200MHz, for signed 11-bit
operations.

➢We demonstrate sentiment classification using
the intrinsic dynamics of SNNs achieving
competitive accuracies with LSTMs.

Technology 65nm

Macro Area 0.089 mm2

Cell Type 10T

Memory
WMEM : 9kb

VMEM : 2.25kb

Weight/Vmem bits 6-bit/11-bit

Supply Voltage 0.7 ~ 1.2 V

Max. Frequency 500 MHz

Energy Efficiency

0.99 (TOPS/W)

@200MHz, 0.85V

(signed 11-bit op)

2mm

Memory

ArrayD
e
c
o

d
e
r

PeripheralsCTRL

326µm

2
7

2
µ

m

2
m

m

51A. Agrawal et. al. , “IMPULSE….”, IEEE Solid State Circuits Letters, 2021

Embedding ROM in a RAM

52

ROM Embedded RAM

Embedding ROM in CMOS and 1T-1R Arrays
Enabling Near-Memory Computing through

Lookup Tables

Embedding ROMs in RAMs (NVMs)

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

V
read

V
read

V
read

V
read

V
read

V
read

RAM Data RAM Data RAM Data

Both ROM and RAM data are stored in the same bit-cell. The read cycle
determines whether the ROM or the RAM data is being read.

D. Lee, K. Roy, IEEE EDL 2013

Embedding ROMs in RAMs (STT-MRAM)

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

FLP
L

V
read

ROM Data ROM Data ROM Data

V
read

V
read

D. Lee, K. Roy, IEEE EDL 2013

Computing-In-DRAM

56

➢ Majority-based vector addition

𝑪𝒐𝒖𝒕 = 𝑴𝒂𝒋(𝑨,𝑩, 𝑪𝒊𝒏)

𝑺 = 𝑴𝒂𝒋(𝑨,𝑩, 𝑪𝒊𝒏, 𝑪𝒐𝒖𝒕, 𝑪𝒐𝒖𝒕)

➢ Store data vectors in column-
based fashion

➢ The result of A+B
addition is stored
in the same
column

➢ Massively-parallel
vector additions in
bit-serial mode

➢ No need for carry
shifts across
bitlines!

➢ Same subarray peripheral
circuits

➢ Add 9 reserved rows for
compute (<1% area overhead)

In-DRAM Low-cost Bit-serial Addition

Ali, Jaiswal, Roy, “In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM
Technology,” TCAS-I, 2019

B
it-lin

e
B
L

A = 0

B = 0

C = 1

WL0 = 0

WL1 = 0

WL2 = 0

SAE = 0

½ VDD

½ VDD

(1) Initial state

WL3 = 0

WL4 = 0

D = 0

E = 1

A

B

C

1

1

1

0

½ VDD + Δv

½ VDD

(2) Enable WLs

D

E

1

1

A

B

C

1

1

1

1

Maj (A,B,C,D,E) = 0

VDD

(3) Enable Sense amp

1

1

D

E

Multiple row activation to calculate Maj(A,B,C,D,E)

In-DRAM Low-cost Bit-serial Addition

1
0
1
1
0
1
1
0

A0

0
1
1
0
0
0
1
1

B0

Sum

0
0

A

A

C
o

m
p

u
te

R

o
w

s
D

at
a

R
o

w
s

B
B

Cin

Cin

Cout

Cout

A7

B7

(0) Initial state

0 0 0 0 0 0 0 0row0 row0

1
0
1
1
0
1
1
0

A0

0
1
1
0
0
0
1
1

B0

Sum

1
1

0
0

A
A

B
B

Cin

Cin

Cout

Cout

A7

B7

(1) Copy A

0 0 0 0 0 0 0 0

A
A
B

B

Cin

1
0
1
1
0
1
1
0

A0

0
1
1
0
0
0
1
1

B0

Sum

1
1
0
0
0
0

Cin

Cout

Cout

A7

B7

(2) Copy B

row0
0 0 0 0 0 0 0 0 row0

1
0
1
1
0
1
1
0

A0

0
1
1
0
0
0
1
1

B0

Sum

0
1
0
0
0
0
1
1

Cout

A
Cout

B
Cout

Cin

Cout

Cout

A7

B7

(3) Calculate Cout/Cout

0 0 0 0 0 0 0 0

1
0
1
1
0
1
1
0

A0

0
1
1
0
0
0
1
1

B0

1Sum

0
1
0
1
0
1
1
1

Cout

A
Cout

B
Cout

Cin

Cout

Cout

A7

B7

(4) Calculate S

row0 0 0 0 0 0 0 0 0

For n-bit vector addition, 4n+1 operations are needed

An example of 1-bit addition of two vectors A and B

0
0.2
0.4
0.6
0.8

1

Baseline Proposed
System

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n

Ti
m

e

Host Processor

(Top-k Sort)

Main Memory &
In-DRAM Computing

(Manhattan Distance)

Add/Sub
requests Sum/Diff data

kNN Output

Test Data

Train Data

Processor X86, 2GHz

L1 Cache 32KB I- and D-Cache

L2 Cache 2 MB

Main memory
1024 MB, DDR3-1600,

1 channel, 1 rank, 8 banks

Using modified gem5 simulator from S.Xu et. al,ICAL’19

11.7x performance improvement

Case Study: Compute-in-DRAM based k-NN Acceleration

➢ Checks k closest samples, Query vector assigned to the group
that holds majority among those k samples

➢ Mainly consists of two computation stages: Distance
computation and Global top-k sort

➢ The k value: The number of closest samples to be checked
➢ One-to-one distance computation: a large # of memory accesses

Ali, Jaiswal, Roy, “In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM
Technology,” TCAS-I, 2019

Multiplication Primitive

62

AND ADD

DRAM subarray

compute rows

➢Multiplication can be broken down in terms of AND and ADD operations.

➢Multiplication operation reserves 9 compute rows in the DRAM subarray.

PIM-DRAM Architecture

63

➢ Special Function Units consist of ReLu, Pooling, Batch normalization and Quantize units.

➢ The Multiplication operation happens in parallel across different DRAM subarrays for data in
transposed layout.

➢ Every DRAM bank is allocated to a layer in the Neural Network.

➢ P1-P5 represents the degree of parallelism while mapping DNN layers on DRAM banks.

4-bit act. and W

Roy, Ali, Raghunathan, PIM-DRAM: Accelerating Machine Learning
Workloads using Processing in Commodity DRAM, IEEE JETCAS, 2021

C-BRIC Artifacts: Chip Gallery #1
In-Memory Computing, Digital DNN Accelerators

3
.0

 m
m

Technology
40 nm CMOS

& RRAM process

Active area 0.437 mm
2

Package QFN48

Power 11.05 mW

Digital VDD 0.9 V

Analog VDD 0.8 V

I/O VDD 3.3 V

MAC
mode

1 to 8-bit
MAC mode

Energy
efficiency

0.99-4.15
TOPS/W

3.0 mm

RRAM
& MUX

8-BL
RD
ckt Post-MAC &

control logic
(DTOP)

I2C

Level
Shifter

Frequency 100 MHz

Fig. 7: Microphotograph of the test-chip and summary of performance

SRAM
IMC

RRAM
IMC

RRAM Array and Decoder

Read-out Circuit

SRAM Memory Array

MAC Engine

65nm: XNOR-SRAM
S. VLSI’18, JSSC’20

65nm: IMPULSE
SSCL’21

65nm: Dyn. Sparsity
SSCL’21

28nm: Prog. IMC accelerator
S. VLSI’21

Winbond 90nm:
XNOR-RRAM, 2-bit-per-cell
Micro’19, TED’20, SSCL’20

TSMC 40nm: Binary RRAM,
multi-bit encoding

ISSCC’21, CICC’21, JSSC’22

SUNY 65nm:
RRAM/SRAM

based hybrid IMC

TSMC 40nm: RRAM IMC System
with embedded processor

Digital
Accelerators

40nm: CNN inference w/
conditional computing

CICC’20, JSSC’21

65nm: LSTM inference w/
hierarchical structured sparsity

ESSCIRC’19, JSSC’20

65nm: 16-bit fixed-point
CNN training accelerator

SSCL’20

IM
C

 M
ac

ro
s

IM
C

 S
ys

te
m

s

ASU
Purdue

Georgia Tech
(w/ ASCENT,

Samsung, TSMC)

C-BRIC Artifacts: Chip Gallery #2
Large-Area Sensing, RL, SNN, Optimization, Robotics

2.5 mm

2

m
m

Frame
Buffer

Actor-
Critic

Controller

Peripheral + Instr/Data Cache

PE PE PE

PE PE PE

PE PE PE

Adaptive TX RX

LAE 2.4 GHz monolithically-integrable
reconfigurable antenna

IEDM’20

1
5

0
μ

m9cm (~0.7λ at 2.3GHz)

2.5 μm-thick

Au inductor

20kΩ Cr

resistor

3000μm/1.4μm ZnO TFT

Cu Patch

(4.2×4.2mm)

Resonant

RF Switch

LAE 13.56 MHz RFID
reader array

SSCL’18

LAE 1 GHz Phased Array
Nature Electronics’21

Hybrid 130nm CMOS / LAE
tactile sensing array

ISSCC’19

LAE 2.4 GHz passive backscattering
beamformer for event-driven sensing

65nm: Edge SoC with
edge-cloud load balancing

S’ VLSI’20, JSSC (review)

Princeton
Georgia Tech

Purdue (w/ Intel)

SRAM #0

7x7 SNN-

based

pose-cell

array

2.0 mm

2
.5

 m
m

SRAM #1

Controller

65nm: NeuroSLAM
SNN-based visual SLAM acc.

ISSCC’20, JSSC’21

65nm: OPTIMO
49-core optimization processor

CICC’19, JSSC’19

Edge AI for swarm robotics
130nm: ISSCC’18, JSSC’19

Tiny-RL, analog compute
130nm: JSSC’18

Stochastic binary SNN
90nm: TCAS-I’20

Parting Thoughts…

➢While possibilities of achieving large improvements in
inference latency and energy is possible…

➢There are several challenges…
oArray efficiency
oCross-bar non-idealities: Device non-linearity, access

transistor/selector device, circuit non-idealities (line resistance,
source/sink resistance), process variability

oReliability and endurance of non-volatile devices
oHigh write cost for NVMs
oA/D and D/A converters
oData movements from partial sums
o Training/mapping to the hardware – degradation over time for

some NVM technologies
oNeed for vector operations and floating point operations
o SRAMs are large compared to emerging NVMs

Neuro-electronics Research Laboratory

Acknowledgement

Vannevar Bush
Faculty Fellow

